what do the variables represent in ax+by=c?
also, how do you write in correct format x%26gt;14 or x%26gt;20? is it 14%26lt;x%26gt;20? or sumthing else?
also,
simplify the following:
1. (-2x^2y)^2 (-2x^2y)^3
2. [6(x-1)^2] / [18(x-1)^3]
3. 8x^-2
4. {[x^2] / [y^3]}^-3
5. (2x^-2) / [(4y)^-3]
6. (x^2-4) / (2x-4)
Factor the following completely:
7. 9-x^2
8. 4x^3 + 8x^2 +4x
9. 3x^2 - 48y^2
10. 4x^2 + 20xy +25y^2
11. x^2+5x+84
12. 30a^2 - 5a -5
13. p^2-2p- pt +2t
14. 3x^2 - 2xy +6x -4y
Solve:
15. x^2-x-72=0
16. x^3-9x=0
17. x^2-x-6=0
i no its super long, but PLZZZZ help me i really need help SHOW ALL THE WORK PLZ. i am trying to learn how to do this stuff. :( crazy hard for me
Ax+by=c help!?
i dont understand the ax+by= c
i know that is linear equation in standard form
x is input, y= output
youcan find x,y -intercept
make sure u typed it right.
x%26gt;14 or x%26gt;20 you can not write 14%26lt;x%26gt; 20
you need to write on separate part like the first time you have
if the problem wants you to combine 2 of them together then answer is x%26gt; 20
1.(-2x^2y)^2 (-2x^2y)^3 did you mean multiplication here? then
4x^4y^2 *(-8x^6y^3)
-32x^10y^5
2. . [6(x-1)^2] / [18(x-1)^3]
[6(x-1)^2 ]/[ 18(x-1)^2 *(x-1)]
1/[3(x-1)]
3. 8x^-2
8/x^2
4. {[x^2] / [y^3]}^-3
x^-6/ y^-9
y^9 / x^6
5.(2x^-2) / [(4y)^-3]
(2/x^2)/[ 4^-3 *y^-3]
(2/x^2)/[ 1/(64y^3)]
128y^3 / x^2
6. (x^2-4) / (2x-4)
(x-2)(x+2) /[2(x-2)]
(x+2)/2
7. 9-x^2
(3-x)(3+x)
8.4x^3 + 8x^2 +4x
4x(x^2 +2x+1)
9. 3x^2-48y^2
3(x^2-16y^2)
10.
4x^2+20xy+25y^2
(2x+5y)^2
(2x+5y)(2x+5y)
11. x^2+5x+84
can not factor i think you typed wrong that should be - 84, not pluse 84
x^2+5x-84
(x+12)(x-7)
12. 30a^2 -5a-5
5( 6a^2 -a-1)
5(2a-1)(3a+1)
13.p^2-2p- pt +2t
p(p-2) -t(p -2)
(p-2)(p-t)
14. 3x^2-2xy+6x-4y
x(3x-2y) +2(3x-2y)
(3x-2y)(x+2)
15. x^2-x-72=0
(x-9)(x+8)=0
x-9=0 or x+8=0
x=9 or x= -8
16. x^3 -9x=0
x(x^2-9)=0
x= 0, x^2-9=0
x=0, x^2=9
x=0, x= -3, x= 3
17. x^2-x-6=0
(x-3)(x+2)=0
x-3=0 or x+2=0
x=3 or x =-2
that is long problem i cant guarantee to be always correct plz check the answer before writing down .
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment